Лекция 2. Арифметические и логические принципы ЭВМ

План лекции:

- 1. Системы счисления, применяемые в ЭВМ.
- 2. Перевод чисел из одной системы счисления в другую
- 3. Представление вещественных чисел
- 4. Логические основы построения ЭВМ

Системы счисления, применяемые в ЭВМ. Перевод чисел из одной системы счисления в другую

Компьютер может обрабатывать числовую, текстовую, графическую, аудио и видеоинформацию. Все эти виды информации кодируются в виде последовательности электрических импульсов: есть импульс (1), нет импульса (0). Такое кодирование информации называют двоичным Преобразование кодированием. сигналов производится базовыми элементами, реализующими логическими три основные логические операции: И, ИЛИ, НЕ.

Наряду с двоичной применяются восьмеричная и шестнадцатеричная системы счисления. Перевод для целой и дробной части осуществляют отдельно, после чего целую и дробную части совмещают.

Перевод целого числа из десятичной СС в СС с основанием Р осуществляется последовательным делением с остатком на основание Р системы счисления, пока последнее неполное частное не станет равным нулю. Для записи в Р-ичной системе счисления остатки записывают в обратном порядке.

Перевод целых чисел из десятичной СС в СС с основанием

Перевод дробного числа из десятичной СС в СС с основанием Р осуществляется последовательным умножением дробной части на основание Р системы счисления, пока дробная часть не станет равной нулю либо не будет достигнута требуемая точность. Для записи в Р-ичной системе счисления целые части записывают в порядке их получения

Перевод дробных чисел из десятичной СС в СС с основанием

Далее совместим целую и дробную части:

$$35,78125_{10} = 100011,11001_2 = 43,62_8 = 23,C8_{16}.$$

Обратный перевод осуществляется сложением разрядов, умноженных на соответствующие степени основания Р системы счисления:

$$100011,11001_{2} = 1 \cdot 2^{5} + 0 \cdot 2^{4} + 0 \cdot 2^{3} + 0 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0} + 1 \cdot 2^{-1} + 1 \cdot 2^{-2} + 0 \cdot 2^{-3} + 0 \cdot 2^{-4} + 1 \cdot 2^{-5} = 22 + 0 + 0 + 0 + 2 + 1 + 0,5 + 0,25 + 0 + 0 + 0,03125 = 35,78125$$

$$43,62_{8} = 4 \cdot 8^{1} + 3 \cdot 8^{0} + 6 \cdot 8^{-1} + 2 \cdot 8^{-2} = 22 + 3 + 0,75 + 0,03125 = 35,78125$$

$$23,\tilde{N}8_{16} = 2 \cdot 16^{1} + 3 \cdot 16^{0} + 12 \cdot 16^{-1} + 8 \cdot 16^{-2} = 22 + 3 + 0,75 + 0,03125$$

Если числа переводят из СС с основанием P1 в СС с основанием P2, где P1 является степенью P2, то числа переводят, представляя каждую цифру в виде ее разложения в СС с основанием P2, после чего незначащие нули опускают.

Рассмотрим на примере. $43,62_8 = 100 \ 011,110 \ 010_2 = 100 \ 011,110 \ 01_2$ $23,C8_{16} = 0010 \ 0011,1100 \ 1000_2 = 100011,11001_2$

Правила выполнения арифметических операций в Р-ичных системах счисления аналогичны правилам в десятичной системе счисления.

Представление вещественных чисел

При естественной форме записи (с фиксированной точкой) числа записываются:

Но при этом требуется большое количество разрядов.

Те же числа можно представить в нормализованной форме (с плавающей точкой) в виде $A=\alpha \ P^k$,

где α - дробное число ($D^{-1} \le \alpha < 1$),

Р – основание СС,

k – целое число:

$$0.215*10^3$$
; $0.215*10^1$; $0.215*10^{-1}$; $0.215*10^5$.

или

Отметим, что для записи всех этих чисел ушло одинаковое число знаков.

Первая группа цифр представления числа с плавающей точкой называется мантиссой, а вторая — порядком. Количество цифр в мантиссе определяет точность, с которой представлено число. Количество цифр порядка определяет наибольшее и наименьшее представимые числа.

При сложении чисел в нормализованной форме сначала уравниваются порядки слагаемых: меньший порядок числа увеличивается до большего. После этого мантиссы складываются, а порядком суммы будет общий порядок слагаемых.

$$(0,961\mathring{A} + 5) + (0,581\mathring{A} + 4) = (0,961\mathring{A} + 5) + (0,0581\mathring{A} + 5) =$$

= $(1,0191\mathring{A} + 5) + (0,10191 + 6) =$

При умножении нормализованных чисел следует перемножить мантиссы, а порядки сложить и, если требуется, нормализовать произведение.

$$(0.23\text{\AA} + 5) \cdot (0.32\text{\AA} - 3) = 0.0706\text{\AA} + 2 = 0.706\text{\AA} + 1$$

Логические основы построения ЭВМ

В основе управления автоматическими машинами вообще и ЭВМ в частности лежат методы математической логики. Если быть точнее, начальный раздел математической логики – исчисление высказываний или алгебра логики.

Все цепи управляющих и вычислительных устройств механических, электромеханических и электронных вычислительных машин состоят из логических элементов, выполняющих логические операции. Переключение этих элементов происходит в результате получения механических или электрических сигналов. Наличие сигнала воспринимается как значение истинности — 1, отсутствие сигнала — 0 (высокий и низкий уровень напряжения).

Логический элемент компьютера — это часть электронной логической схемы, которая реализует элементарную логическую функцию. Логическими элементами компьютера являются электронные схемы: И, ИЛИ, НЕ, триггер и вентили.

Триггер — элемент, который может находиться в одном из двух устойчивых состояний (1 или 0) и по внешнему сигналу изменять его. Это важнейшая структурная единица ОЗУ.

Алгебра логики — это раздел математики, изучающий высказывания, рассматриваемые с точки зрения их логических значений (0 и 1) и логических операций над ними. Рассмотрим операции алгебры логики

поти тесний операции над инин. Тассиотрим операции ал соры потики								
Α	В	$A \wedge B$	$A \lor B$	$A \rightarrow B$	A↔B	A B	A↓B	$\neg A$
						'		
0	0	0	0	1	1	1	1	1
	Ü	Ü	Ü	_	_	_	4	4
0	1	0	1	1	0	1	0	1
	_		_	_		_	,	-
1	0	0	1	0	0	1	0	0
	_		_	_		_	,	·
1	1	1	1	1	1	0	0	0
	_	_	_	_	_		Ü	Ü

Логические законы позволяют производить тождественные преобразования логических выражений:

Законы	для конъюнкции	для дизъюнкции			
Идемпотен-	$X \wedge X = X$	$X \lor X = X$			
тность					
Коммутатив-	$X \wedge Y = Y \wedge X$	$X \lor Y = Y \lor X$			
ность					
Ассоциатив-	$(X \wedge Y) \wedge Z = X \wedge (Y \wedge Z)$	$(X \lor Y) \lor Z = X \lor (Y \lor Z)$			
ность					
Дистрибутив-	$X \wedge (Y \vee Z) =$	$X \lor (Y \land Z) =$			
ность	$= (X \wedge Y) \vee (X \wedge Z)$	$= (X \vee Y) \wedge (X \vee Z)$			
Закон де	$\overline{X \wedge Y} = \overline{Y} \vee \overline{X}$	$\overline{X \vee Y} = \overline{Y} \wedge \overline{X}$			
Моргана					
Закон	$X \wedge (X \vee Y) = X$	$X \lor (X \land Y) = X$			
поглощения					
Операции с	$X \wedge 1 = X$	$X \lor 0 = X$			
константами	$X \wedge 0 = 0$	$X \vee 1 = 1$			
Операции с	$X \wedge \overline{X} = 0$	$X \vee \overline{X} = 1$			
инверсией					
Закон двойного отрицания $\overline{\overline{X}} = X$					